

DIRECT CONTACT STEAM GENERATION (DCSG) LOWER GHG ENHANCED OIL RECOVERY

CORPORATE PRESENTATION – Q1 2021

GERI HISTORY AND DCSG DEVELOPMENT

CONVENTIONAL STEAMING VS DIRECT CONTACT STEAM GENERATION

DCSG PROCESS FLOW DIAGRAM

GERI DCSG PROCESS EQUIPMENT

GERI's DCSG fits within a standard well lease

DCSG TOOL PERFORMANCE TESTING - SEPT 2021

- Unit 2 Improvements
 - Move-in, setup, commission time/cost/manpower reduced by 20% (additional improvements forthcoming)
 - Sustained power level capability 10.5 GJ/hour
 - Flexible, full-tested PLC/software enhancements ("commercial grade")
- DCSG Improvements (Steam-side)
 - Tested Tool Power Rate 11 GJ/hour*
 - Projected Tool Power Rate 12.5 GJ/hour
 - Increased component longevity
 - Steam Quality 80%
 - Ignition \rightarrow Full power time reduced from 45 minutes to 6 minutes
- DCSG Improvements (Hot-water)
 - Tests done with Produced water
 - Capability of 430 m3/day at 8.5 GJ/hour. Higher rates possible with minor Tool reconfiguration
 - No Tool scaling or wear & tear

Commercial Ready

* Upper limit of site equipment/gas supply

UNIT 2 CAPABILITIES

Injection Conditions				Inlet rates			Outlet rates		
Heat rate	10.5	GJ/hr	Water	86.4	m³/d	N ₂	52.0	e ³ m ³ /d	
Pressure	7200	kPaa	Air	65.7	e ³ m ³ /d	CO ₂	6.9	e ³ m ³ /d	
Temperature	251	°C	Fuel	6.4	e ³ m ³ /d	Water (I)	19.6	m ³ /d	
						Water (v)	77.2	m ³ /d	
						Quality	80.0	%	

DCSG BENEFITS

EOR - RESERVOIR (IMPROVED SOR)

- Reduced oil viscosity and improved relative permeability (Kr) to oil and gas through thermal heating (steam)
- Re-pressurization of reservoirs through N₂ and CO₂ injection
- CO₂ retention / sequestering within the reservoir (lower GHG emissions, oil swelling, viscosity reduction)

OPERATIONAL

- Portable and readily deployed to existing well leases
- Releases 16% 65% fewer GHGs vs Once Through Steam Generation (OTSG)
- Consumes 11% 50% less fresh water than OTSG
- Annular Cooling loop allows for steaming of non-thermal wells

OIL AND TEMPERATURE

The viscosity of oil has a logarithmic relationship with temperature

<u>A little bit of heat goes a long way!</u>

<u>GERI's technology adds pressure as well as</u> <u>heat</u>

STEAM AND FLUE GAS STUDIES

Numerous studies and field implementations have shown that flue gas materially improves oil recovery

- AN EOR APPLICATION @ LIAOHE OIL FIELD IN CHINA May 2001
 - Flue gas injection in combination with steam **increases overall recovery factors from 20%-30% to 50%-60%**
- TECHNICAL AND ECONOMIC FEASIBILITY STUDY OF FLUE GAS INJECTION IN AN IRANIAN OIL FIELD July 2015
 - Flue gas increases oil recovery by 11%
 - Flue gas recovery is also greater than CO₂ injection and N₂ injection when the same amount of CO₂ and N₂ present in the flue gas is injected separately
- LABORATORY STUDY ON STEAM AND FLUE GAS CO-INJECTION FOR HEAVY OIL RECOVERY SPE 165523 JUNE 2013
 - Flue gas helps keep the pressure behind the front more stable
 - Co–injection of steam with flue gas accelerates the start of oil production, with recoveries up to 79%
- FLOW CHARACTERISTICS OF STEAM AND GAS PUSH IN PRESENCE OF THIEF ZONES OVERLYING OIL SANDS DEPOSITS APPLIED SCIENCES MDPI – SEPT. 2017
 - Nitrogen in flue gases can act as an insulating layer at the top of the formation limiting steam chamber growth into thief zone

GERI ANNULAR COOLING LOOP*

- Injection stream from 90°C 240°C
- Provides the ability to steam non-thermally cased and cemented wellbores
- Testing** has shown maximum annular temperatures of 60° C (typical operating range 30° C -45° C)
- Operates as a closed loop water system with the ability to add additional cooling water if necessary

* Patent Pending

** Observed in our Lloydminster Pilot Projects

G ERI BENERAL ENERGY RECOVERY INC.

GERI'S DCSG INJECTIONS – WELL PERFORMANCE TO DATE

5-20-49-27W3, Lloydminster, Saskatchewan, Canada – Vertical Well,

- 2 cycles @ 4.5 MMBTU/hr for 20 days/cycle
 - Average injection pressure ~ 825 psi
 - Steam Quality 65%

Mervin area, Saskatchewan, Canada – Vertical Well

- 1 cycle @ 6 MMBTU/hr for 20 days
 - Average injection pressure ~ 800 psi
 - Steam Quality 65%

Morgan area, Alberta, Canada – Horizontal Well

- 1 cycle @ 8.3 MMBTU/hr for 18 days
 - Average injection pressure ~ 725 psi
 - Steam Quality 72-84%

Field tested in Sparky, Waseca, and Lloydminster formations (API range 11 – 16, and oil viscosity range 2,000 cp – 25,600 cp)

5-20-49-27W3 AREA PRODUCTION RESULTS

Test Well & Offset Wells Performance

- Total of 18,000 bbls of incremental oil production from two cycles
- Cum SOR of 0.58 (independently verified by Saskatchewan Research Council)

5-20-49-27W3 WELL – FIRST CYCLE GAS RETENTION / SEQUESTERING

70% of the CO_2 has been sequestered

MORGAN PROJECT AREA

- SOR = 3.19 (Pilot well only)
- SOR = 1.55 (Offset wells included)
- Production up to October 2021 from AccuMap

* 10-11 and 16-02 were restarted to capture benefits from offset production

MORGAN AREA PRODUCTION RESULTS

Morgan Area Well, Alberta

Shut-in for ~8 years (no artificial support)

GHG QUANTIFICATION AND MITIGATION

GHG evaluation addresses two distinct sources of emissions:

- GERI's DCSG direct emissions
- Well (production) emissions

GERI is committed to exceeding regulatory GHG requirements and goals

GERI: CARBON INTENSITY (CI)

- Study compares carbon from different Electrical sources.
- GERI's DCSG (using natural gas generation) resulting in up to 67% carbon intensity reduction vs. OTSG.
- Even at equal SOR, <u>GERI's GHG intensity is at least 16% lower (vs. once-through steam generation)</u>

	Source of Electricity Consumed				
	Natural Gas (gen.)	Alberta Grid	Good-as-best-gas	Solar	
	t CO ₂ e/mbbl				
Project - GHG Emissions ¹	36	37	25	11	
Baseline - GHG Emissions ²	108				
Total GHG Emission Reductions (kg CO2e/bbl produced)	72	71	83	97	
% Emissions Reductions @ SOR = 3.0	17%	16%	42%	74%	
% Emissions Reductions @ SOR = 1.2	67%	65%	77%	90%	

1 Project SOR= 1.2 2 Baseline SOR= 3.0

According to Orellana et.al. (Environ Sci Technol, 2018 Feb) the estimated median GHG emissions associated with bitumen production via cyclic steam stimulation (CSS) to be 77 kg CO₂eq/bbl bitumen (80% CI: 61-109 kg CO₂eq/bbl), and via steam assisted gravity drainage (SAGD) to be 68 kg CO₂eq/bbl bitumen (80% CI: 49-102 kg CO₂eq/bbl).

PRODUCER: CARBON INTENSITY (CI)

- Emissions as a result of Production.
- Nitrogen and Carbon Dioxide returned in associated gas produced.
- A wide variety of scenarios depending on the location, equipment and mitigations strategy:

	N ₂ Conc (+CO ₂)	Methane Conc.	Carbon Intensity					
GOR			Gas gathered to sales	Methane destruction (Thermal Oxidation)	Supplemented flare	Gas vented		
scf/bbl	%	%	t CO ₂ e / mbbl	t CO ₂ e / mbbl	t CO ₂ e / mbbl	t CO ₂ e / mbbl		
500	98	2.5	0	25.7	636.7	642.9		
500	90	10	0	25.7	146.9	642.9		
500	80	20	0	25.7	65.3	642.9		
500	70	30	0	25.7	38.1	642.9		
500	60	40	0	25.7	25.7	642.9		
500	0	100	0	25.7	25.7	642.9		

• GERI is capable of analyzing CI for specific projects and assisting in implementing the best solutions.

This table considers CO_2 emissions associated from methane venting/combustion only and does not include returned CO_2 in the produced stream

ADDITIONAL ENVIRONMENTAL BENEFITS

- GERI's DCSG uses less than half the fresh water compared to once-through steam generators (at 80% steam quality). At equal SOR, GERI requires 11% percent less water
- Air Quality (CACs): GERI's DCSG emits >50% less air pollutants (NOx SOx, PM2.5, VOC, CO) vs conventional steam process

 GERI can utilize produced water for hot water flooding (0% steam quality). Successfully tested with up to 10,000 ppm TDS